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Chemistry of Cyclopropyl-p-Benzoquinone: A Scheme 1
Specific Organogenesis Inhibitor in Plants OH
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The activity of several classes of antitumor antibiotics (e.qg., o

the mitomycins, anthracyclines, and enediynes) is based on

R, Rz ) R,
unmasking a specific functionality after reduction of a quinone 0 R D—H OF; R,
nucleust? Daunomycin, for example, has an amino sugar H BusSnH "
positioned proximal to the quinone; this relatively poor leaving
group appears to be jettisoned only after quinone reduction. The ) oH
mitomycins undergo the more thermodynamically favorable
aziridine ring-opening, again via the semiquinone. Here we ¢ e [2m
explore the chemistry of a cyclopropane when it is attached to
the quinone nucleus. This investigation has led to the generation Ry P2
of a new class of specific inhibitors of redox-controlled 0 R T—H
development, the simplest of which is cyclopropybenzo- H
quinone (CPBQY. We report on the unique reaction pathways
open to various substituted cyclopropanes, each bearing a L
quinone as one substituent on the ring, and discuss their potential 2a

biological relevance to the mechanism of theivo inhibition. Figure 1. Reduction of cyclopropylbenzoguinones (Q) to -hydro-

o OH o o OCONH, quinones (HQ): CPBQ to CPHQ,;R= R, = H; CPBQ4; to CPHQ-
Ho HaN OCH, 2 ds, Ry = R, = D gives 3%iransisomer;cis-Ph-CPBQ tais-Ph-CPHQ,
O‘O‘ . R: = Ph, R = H gives 70%trans isomer.
H HaC N NH
o

CHO0 O OH O o . . .
" One-electron reduction produces an electron-rich semi-

daunomycin 071> : mitomycin C cPBa quinone. Under conditions that extend its lifetifmeyclopropyl
OH ring isomerization occurs more rapidly than further reduction

to the hydroquinone (Figure 1). Neither CPBRnor cis-Ph-
CPBQ isomerized in the absence of reductants, while the
hydroquinones, CPH@s; andcis-Ph-CPHQ, did not isomerize

in the presence or absence of reductants. Moreover, reduction
in BusSnD showed no incorporation of deuterium. Taken
together, the isomerization does not originate with hydrogen
atom abstraction; rather, isomerization must be the result of
cyclopropyl ring-opening from the semiquinone.

The bioreductive antibiotics exploit the anionic character of
the semiquinoné&2 With the cyclopropane, the reactions of the
semiquinone of CPBQ are more related to the ketyl anion of
the aryl cyclopropyl ketones.Radical character is delocalized

Several mechanism-based inactivators are known in which a
cyclopropane is activated for nucleophilic attack by substituent
protonatiort CPBQ adds solvent under acidic conditions
(TsOH/MeOH), but to the quinone nucleus, as seen for the
alkylquinones’, rather than to the cyclopropan&a Scheme
1). However, the phenyl substituentdis-Ph-CPBQ activates
cyclopropane opening; clean addition of 2 equiv of solvent
produces the hydroquinone as a mixture of all four stereoiso-
mers,1b. The electron-deficient quinone uniquely activates the
cyclopropane, via the quinone methide, for the addition of two
nucleophile equivalents.
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Scheme 2 charge transfer character in the excited dfatnd with a
* dominant funneling through path B.

@]
A In conclusion, benzoquinone redox chemistry is critical both
o I to the activation of several classes of antitumor antibiotics and
/ o —L to the function of several well-known redox circuits, most
id notably in the electron transport chains associated with oxidative

i (>300nm) oA phosphorylation and photosynthesis. Redox-responsive gene
B (>/A expression systems have been detected recently in both prokary-

otes and eukaryoté8. For example, specific benzoquinones
have been shown to induce organogenesis in plditand it
was recently suggested that these compounds act to complete a

®
? o critical redox circuit required for the initiating event in cellular
© Bon OR development. The chemistry described above appears to be
% OH 3

particularly useful in the study of the mechanism of the initiation
of plant development, as the simplest structure, CPBQ, functions
as a specific irreversible inhibitor.

3 may arise by rearrangement of the diradical and electron  This inhibition could require trappingb, an intermediate
demotion, as suggested in Scheme 2, path A; however, thesavhich contains radical and quinone methide character. Cyclo-
characteristics appear to be more consistent with previously propylamines have been developed as mechanism-based inhibi-
described reactions of one-electron cycloprappbnds. When tors of monoamine oxidase; here, radical recombination with
oxidized intermolecularly with photoexcited oxidants, arylcy- the ring-opened structure gives covalent adducts between the
clopropanes add nucleophiles with high regio- and stereoselec-flavin cofactor and the inhibito¥? 2b would have to be trapped
tivity.22 In the case of CPBQ, intramolecular oxidation of the by a reactive functional group unique to the binding site of the
cyclopropane could occur by direct low-energy excitation of redox-active binding protein in order to explain the observed
the quinoné3 The lowest energy CPB@ — z* transition is inhibition. The unique ability of CPBQs to accept two
red-shifted from methylbenzoquinone by 30 nm to 345 mm ( nucleophile equivalents, essentially cross-linking the binding
1492 cnt*M™1). Irradiation at this frequency results in a broad, — site, may also explain the inhibition. The product distribution
structureless fluorescence centered at 42@‘hrlkylquinones, from this reaction should be readily distinguished from a redox-
in general, have excited singlet and triplet states that are of activated inhibition pathway. Both pathways appear to require
comparable energy;y50—60 kcal/mol, and fluorescence is not  nucleophilic residues within the binding site, and the unprec-
observed. Here, the photochemical results are consistent with edented photoannulation reaction opens a separate and distinct

(10) In addition to3, 4 and the reduced hydroquinobeare isolated in opportunity to map t.he nUCIGOph.”'C residues in the b.lr.]dlng site
a relative ratio of 8:1:1. through photochemical unmasking of the electrophilic center.

The general synthetic utility of this reaction also deserves further

RO%OH %OH scrutiny.
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